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Abstract 

The Cooper-Nathans  formulation of the resolution 
function of a triple-axis crystal spectrometer for 
neutron-scattering experiments gives a singular resol- 
ution matrix when the scattering angle is small. The 
origin of this singularity is discussed and an alterna- 
tive derivation, of the resolution matrix given which 
avoids this difficulty. The results are illustrated by 
numerical calculations for several typical experiments 
showing that resolution corrections may be large and 
very significant for experiments at small scattering 
angles. 

I. Introduction 

A knowledge of the effects of the experimental resol- 
ution in momentum and energy transfer is an impor- 
tant part of any inelastic neutron-scattering experi- 
ment. A general formulation of the resolution func- 
tion of a triple-axis spectrometer was derived by 
Cooper & Nathans (1967), and discussed by Bjerrum 
M~ller & Nielsen (1970), using a Gaussian approxi- 
mation for all the contributing transmission functions 
and crystal mosaic distributions, and the normalisa- 
tion of this function has been treated at length by 
Dorner (1972), and Chesser & Axe (1973). Computer 
programs are widely available for the calculation of 
this function, and it is known to provide a good 
representation of the instrumental resolution in many 
types of triple-axis measurement. 

This paper is concerned with one particular limit 
of the triple-axis resolution function, that of small 
scattering angle at the sample (small 20s in Fig. 1). 
Experiments performed at small scattering angles 
tend to suffer from high background counting rates, 
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Fig. l. Plan view of three-axis spectrometer, a,/3 are horizontal, 
vertical collimations, eM, es, EA take the values - l ,  +1 according 
as scattering at monochromator, sample, analyser is to the right, 
left. Configuration shown is eM = +l, es = -  l, e A =--l. 
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and severe restrictions imposed on the energy trans- 
fers available by the conservation of momentum 
requirement (kinematic limits). In the measurement 
of low-energy magnetic excitations, however, par- 
ticularly in ferromagnetic materials, such experiments 
have a number of advantages. Firstly, the magnetic 
form factor takes its maximum value near (0 0 0), the 
forward direction. Secondly, scattering from phonons 
is generally of low intensity, because of the IQI 2 factor 
(Q is the neutron wavevector transfer) in the phonon 
cross section. Thirdly, the effective resolution near 
(0 0 0) does not suffer from transverse or longitudinal 
broadening due to crystal mosaic spreads or lattice- 
parameter distributions [for the effect of the former 
on resolution, see Werner & Pynn (1971)], and this 
allows, under some circumstances, the direct 
measurement of the magnetic excitations in powdered 
or polycrystalline materials [e.g. Passell, Dietrich & 
Als-Nielsen (1976), on EuO and EuS] and even amor- 
phous ferromagnetic materials (e.g. Axe, Shirane, 
Mizoguchi & Yamauchi, 1977). For these reasons, 
many experiments have been performed at small scat- 
tering angles in weakly ferromagnetic materials, for 
which the magnetic scattering may generally be weak 
compared with the phonon scattering, and large crys- 
tals may be difficult to grow. 

As the scattering angle tends to zero, both the 
efficiency factor and some elements of the resolution 
matrix diverge, since both contain terms in the 
reciprocal of the sine of the scattering angle, and 
extreme care is required to treat the limit correctly. 
The problem first became apparent to the authors 
when using a standard computer program to calculate 
the Cooper-Nathans  function at small scattering 
angles (0.5-1.5°). The resolution matrix itself becomes 
singular in the limit of the scattering angle tending 
to zero, and numerical integration over the resolution 
matrix does not give reliable results unless performed 
with great care and a high degree of numerical pre- 
cision. 

In the following section, we discuss this limit in 
the Cooper-Nathans  formalism, and then in § 3 we 
give a more direct formulation of the resolution func- 
tion, which completely eliminates the problems 
associated with the Cooper-Nathans  function. The 
results are illustrated by some applications in § 4. 
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2. Small-angle limit of the Cooper-Nathans 
resolution function 

A triple-axis spectrometer (Fig. 1) uses Bragg reflec- 
tion from a monochromator  crystal to define a 
nominal incident neutron wavevector, kt, 

I7" 

Ik,I- dM sin OM (2.1) 

and reflection from an analyser crystal to define a 
nominal scattered wavevector, kF, 

7/" Ik~l-da sin 0a' (2.2) 

where dM, A is the appropriate plane spacing and OM, A 
is the appropriate Bragg angle. The directions of 
incident and scattered beams are defined by the col- 
limators before and after the sample, and the scattered 
intensity is measured as a function of nominal 
momentum transfer, Qo, and nominal energy transfer, 
h~'o, where 

Q0 = k~ - k~, (2.3) 

h 2 
hvo = ~m ([k, 12 -IkF[2). (2.4) 

Because of the non-zero angular divergences of the 
collimators and the mosaic spreads of the mono- 
chromator and analyser crystals, neutrons are counted 
in the detector which have not suffered the nominal 
momentum and energy changes. The actual changes, 
Q and h~,, are related to Qo and hvo by 

Q = Q 0  +SQ (2.5) 

hv = hvo + 6(hv). (2.6) 

It is convenient to write these deviations from the 
nominal as a four-component vector, X, 

X = [SQ, 6(h~,)]. (2.7) 

Cooper & Nathans (1967) showed that the instru- 
mental resolution can be written in the Gaussian 
approximation as 

R(X) = Ro exp {-½X. M. X}. (2.8) 

Ro and M are complicated functions of the angles 
defined by the collimators, the crystal mosaics and 
the nominal ]kr[ and [kv[ (Chesser & Axe, 1973). Ro 
also includes terms due to the detector efficiency and 
the monochromator  and analyser reflectivities, and 
some of the elements of M depend upon the senses 
of scattering (i.e. to the left or to the right) at the 
monochromator,  sample and analyser, in addition to 
the dependence of both Ro and M on the scattering 
angle at the sample. 

In detail, Ro contains the following terms which 
depend on 20s (20~ is defined in Fig. 1), 

1 
R ° ° c  A '1/2 sin 20~ (2.9) 

(from Chesser & Axe, equation 6), where A' is as 
defined by Cooper & Nathans (equation 45a) (see 
also Appendix A: A.43). In the limit, as 20~ goes to 
zero, the angles between kl and Qo, and between kF 
and Q0, ~p~ and ~2, respectively (defined in Fig. 2), 
tend to the same value, ~p, say, since 

q~ = q~2 +20~ (2.10) 

• ". ~01 ----- ~P2-- q~. (2.1 l) 

The quantity A' is the sum of six terms, two of which 
are proportional to 

c o s  2 

k~ sin 2 20~" 

For the sake of simplicity, consider two possible cases 
in whch 20~ tends to zero. Firstly, for elastic scattering 
(h~,=0, Ik~l=lkF[), this quantity decreases as 20s 
tends to zero (Qo-~ kv sin 20~; cos 2 ~p --¼ sin 2 20~), A' 
tends to a constant value and R0 then diverges as 
1/sin 20,. Secondly, for inelastic scattering at constant 
Qo, A' behaves like 1/sin 2 20~ as 20s tends to zero, 
and Ro tends to a large (oc k ~ / Q ~ )  constant value. 

The behaviour of the elements of the matrix M in 
the small 20s limit may be illustrated by considering 
only the in-plane (x and y) components of ~Q, 
because the out-of-plane (z) momentum component 
is de-coupled from the rest and does not depend on 
20~. For simplicity, we illustrate the results by choos- 
ing 6(h~,) = 0. This gives the section through the resol- 
ution function in the x - y  plane (the scattering plane) 
at zero energy deviation. Rotation by an angle, 0, in 
this plane diagonalizes this part of the matrix (see 
Appendix A for details), and the result is that 

(2.12) 0 = -- es~O 

2 

m° (2.13) 
M'xx °c A' sin 2 20s 

2 (2.14) M 'yy oC m ,j, 

where the new x , y  axes are related to the Cooper -  
Nathans axes (parallel, perpendicular to Qo) by the 
angle 0, and the m U are defined in Appendix A 
(equations A.6-A.13), and are constant as 20s ~0 .  

Equation (2.12) shows that the rotation, 0, required 
from the Cooper-Nathans  coordinates X to the eigen- 
vectors of the section of the resolution matrix in the 

k x 

- F  
q~ 

Fig. 2. Scattering triangle (momentum conservation) correspond- 
ing to Fig. I. 



154 TRIPLE-AXIS NEUTRON SPECTROMETERS 

scattering plane is just the angle that Qo makes with 
either kt or kF. This means that this section through 
the resolution function does not change its orientation 
with respect to kF, in a constant-Q scan, although it 
rotates with respect to Q0. Equations (2.13) and (2.14) 
show that the component of M in the plane and 
parallel to k F is very much larger than the component 
perpendicular to kF. This shows that only one of the 
eigenvalues of M becomes large as 20s becomes small, 
and that the resolution function is very thin in the 
direction parallel to k F  when ~(hv)= O. 

It should be emphasized that the above is con- 
cerned with a particularly simple case of the four- 
dimensional resolution function, and illustrates the 
physical effect of the divergence found in the limit 
of small scattering angle. It suggests that a different 
approach to the formulation of the resolution func- 
tion might eliminate the divergence and this is pur- 
sued in the next section. 

3. Direct formulation for small-angle limit 

As may be seen from the results of § 2 above, that 
component of momentum deviation which is parallel 
to kF is highly correlated with the energy deviation. 
So, in the small-scattering-angle limit, simplification 
may be achieved by working in a frame of reference 
fixed with respect to kF, say. (Because the scattering 
angle is small, we could choose kl instead, but Q0 as 
chosen by Cooper & Nathans varies in direction with 
respect to k F  rapidly as hvo is varied.) 

The derivation of the resolution function proceeds 
as for the Cooper-Nathans  form to the point where 
the instrument transmission is expressed in terms of 
deviations from the nominal kl and kF, in each of 
three mutually orthogonal directions, in frames fixed 
with respect to kl and kF, (x parallel to k, and z out 
of scattering plane in each case). Cooper & Nathans 
then transform to the four components of X and two 
redundant variables, one in-plane and one out-of- 
plane, which are then integrated out. In the limit 
considered here, we take kl and k F t o  be parallel 
(Fig. 3), and transform to three components of 8K 

k k 
- - r  - -F  

Z( )y 

x 

Fig. 3. Coordinates for calculating K. Note that, when relating to 
Q, it is still necessary to calculate ~o, the angle between Q0 and 
k~ or k r  (see Fig. 2). 

(momentum deviations viewed in the flame fixed with 
respect to kF), and three redundant variables, which 
are integrated out. 

Explicitly, we put 

~K--~k,-~ks (3.1) 

and transform from the space defined by (~k~, ~kj) to 
that defined by (~k,, ~K). The energy deviation is given 
by 

h 2 
~(hu)=-~m(2lk, l~k,x-2lkrl~ks,,) (3.2) 

o r  

~(h~,) = (]k'l+lkFl)(~k,~-~kf~) 
m 2 

+ ( [k , ] -  [kF])2 (Sk,x + ~k/x)] . (3.3) 

At small wavevector transfers, the second term in (3.3) 
is much smaller than the first, so that the energy 
deviation is linearly dependent on the x component 
of 8K, 

h2 
8(hv) = ~mm (Ik,I + Ikj:l) ,~K~. (3.4) 

This linear dependence of the energy deviation on 
one of the momentum-deviation components is the 
origin of the singularity of the Cooper-Nathans  
matrix in the limits of small Qo, and the divergence 
of the Chesser & Axe efficiency terms. By inserting 
this dependence analytically at this stage in the deri- 
vation, the resulting resolution function, now 
expressed in terms of three rather than four variables, 
does not have a singularity as 20~ goes to zero. 

We now have the resolution matrix M expressed 
in terms of the three components of K, one of which 
(z) is not coupled to the other two. It is straightfor- 
ward to diagonalize M by a simple rotation in the 
scattering plane by some angle O. All the information 
about the resolution function is contained in the three 
eigenvalues of M, the angle O, and the efficiency 
factor Ro, all of which are derived in closed form in 
Appendix B. The energy deviation is given by (3.4). 
We have therefore eliminated the difficulties encoun- 
tered at small 20~ in the conventional approach. 

The expressions derived in Appendix B show that 
the slope of the resolution matrix varies rapidly with 
energy transfer and in particular that it is possible to 
focus both energy gain and energy loss at small scat- 
tering angles (Axe et al., 1977), as can also be seen 
qualitatively without the use of algebra. It is possible 
to obtain further simplifications if the dispersion rela- 
tion is a function of only IQI, but these are sufficiently 
complex, as the resolution function is then no longer 
Gaussian, that quantitative calculations are just as 
readily performed with the expressions given in 
Appendix B. 
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4. Applications of the direct formulation 

The prediction of excitation line-widths and line- 
shapes from model scattering laws may be accom- 
plished very simply in many special cases (Cooper & 
Nathans, 1967; Haywood, 1971). However, when the 
scattering law varies rapidly or non-linearly over the 
volume of the resolution function, such predictions 
necessarily involve the use of numerical integration 
methods (Werner & Pynn, 1971 ; Samuelson, 1971). 

A typical ferromagnon dispersion law at small [Q[ 
may be written as 

hu = eg + DIQ[ 2, (4.1) 

where eg is the anisotropy gap, and is usually very 
small, and D is called the spin wave stiffness. Thus 
the excitation energy is a rapidly varying function of 
[QI and, because of the population term in the cross 
section, the intensity of scattering is a function of IQI. 
The problem is further accentuated by the design of 
triple-axis spectrometers, which usually use relaxed 
out-of-plane collimation to maximize the scattering 
intensity, but in an experiment where the nominal 
wavevector transfer, Qo, is small, the out-of-plane 
deviations, 8Qz, may be as large as, or larger than, 
IQol-Since 

IQI2 = iQol 2 +(8Qz)2 +(•Qy)2 +(8Qx)2 +2lQol aQx, 

(4.2) 

the spin wave energies sampled in the resolution 
volume may be up to several times as large as the 
spin wave energy at the nominal wavevector. This 
means that the scattering observed in a constant-Q 
scan is broad in energy, and the peak of the scattering 
may be at some energy higher than the energy of the 
spin wave at the nominal wavevector. These effects 
are just the same as those observed for excitations 
near Bragg peaks at scattering angles other than zero 
(Samuelsen, Hutchings & Shirane, 1970; Hutchings, 
Als-Nielsen, Lingard & Walker, 1981). It is not 
difficult to show that, if the in-plane resolution were 
to be perfectly sharp, the scattering from spin waves 
in a constant-Q scan would appear as in Fig. 4. The 
intensity, I(u), is given by 

{ 
I(u) = if Ihr.,[-- eg + DQ~ 

0 otherwise, 

Q o]} 
(4.3) 

where +, - apply for neutron energy loss, gain and 
n(u) is the Bose-Einstein population factor. That such 
scattering in practice never takes this form indicates 
that the in-plane resolution must also be considered, 
with the effect of rounding the sharp edge at low 
frequencies, and moving the maximum intensity to 
higher frequency. 

The most satisfactory method of accounting for 
resolution effects in this case is to use a computer 
program to generate intensities by integrating an 
assumed dispersion relation over the calculated resol- 
ution function. This has been done, using the direct 
formulation of § 3, for a number of different data sets, 
taken under different conditions in small-scattering- 
angle experiments. Use of this method avoids the 
difficulties associated with the use of the Cooper -  
Nathans formulation mentioned in the Introduction. 
Firstly, the resolution matrix is known exactly in 
diagonal form, and so the problems either of trying 
to integrate over a sharp function in the crystal coor- 
dinates, or of trying to diagonlize a nearly singular 
matrix to transform to the natural resolution-function 
coordinates, are avoided. Secondly, the number of 
dimensions of the numerical integral is reduced by 
one, enabling a more accurate integral evaluation for 
a given amount of computing resources. 

Fig. 5 shows spin wave scattering intensities gener- 
ated by numerical integration from the form derived 
in Appendix B (equation B.13) utilizing the directly 
derived resolution matrix (equations B.4-B.9) and 
assuming a gapless quadratic spin wave dispersion 
relation. The figure shows the effects of changing 
spectrometer configuration and vertical collimation. 

Fig. 6 illustrates simulated intensities fitted by non- 
linear regression analysis to some of the data of 
Bernhoeft, Lonzarich, Mitchell & Paul (1983) for 
Ni3AI. The function form is defined by a fiat back- 
ground term, a Gaussian peak to represent elastic 
scattering, and the intensity due to spin wave scatter- 
ing (dispersion defined by equation 4.1). This last 
term was simulated by performing a numerical 
integration over the resolution function, as derived 
in § 3, of a 8-function spin wave scattering law. The 
importance of an accurate resolution correction for 
this data becomes clear from the effective shift of the 
nominal peak frequency by up to - 3 3 % ,  and an 
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Fig. 4. Intensity of scattering from spin waves which would be 
observed in a constant-Q scan if the only resolution contribution 
were the out-of-plane momentum component. Calculations were 
made using equation (4.3) in the high-temperature limit, so that 
n(u)+½+½-*ksT/hu. Values of parameters used were Mzz = 
500/~2, Qo=0.1 ~-l, eg =0 and D= 10THz/~ 2. 
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Fig. 5. Pure spin wave scattering generated by the computer program. (a), (b) and (c) differ only in configuration of the spectrometer 
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Fig. 6. Experimental data (O) and computer-generated least- 
squares fit (solid line) showing spin wave scattering from Ni3Al 
at various wavevector transfers and temperatures (Tc-~ 40 K). 
20s <- 1.3, 1.6, 1.8 ° for (a) and (b), (c), (d), respectively, k F = 

l.l ~k -~. See text for details. 

energy width in the spin wave peak generated by 
resolution effects which is comparable to the observed 
peak frequency, and roughly double  the energy width 
observed for Q- independent  elastic scattering. 

5. Conclusions 

We have investigated the C o o p e r - N a t h a n s  resolution 
function for triple-axis neutron spectrometers in the 
limit o f  small scattering angles and found that two 
of  the four deviations from the nominal  wavevector 
(three components )  and from the nominal  energy 
become linearly dependent ,  giving rise to a singular 
resolution matrix and efficiency factor. 

By treating this dependence  analytically we have 
derived a resolution function for the small-scattering- 
angle limit which is simpler and both easier and faster 
to compute  than the general C o o p e r - N a t h a n s  func- 
tion. Numerical simulation techniques have been 
employed which show that this direct formulation 
allows a detailed analysis of  data from small-angle 
experiments.  

We emphasise  that the use of  standard C o o p e r -  
Nathans  programs for the calculation of  the resol- 
ution effects does not give satisfactory results for 
small scattering angles,  unless the resolution matrix 
is diagonal ized and the numerical integrations per- 
formed in the diagonlizi~d frame of  reference and 
unless a high degree o f  numerical precision is used 
to cope with the singularity of  the matrix. The direct 
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analysis we have given allows the calculations to be 
performed more accurately and more speedily. 

This work was supported by the SERC. 

APPENDIX A 
Details of Cooper-Nathans at small angles 

In the Gaussian approximation, the resolution func- 
tion may be written 

R =  Ro(X)exp {-½X. M(X). X}, (A.1) 

where X is the space defined by a set of deviations 
from nominal parameters, Ro(X) is the efficiency fac- 
tor, and M(X) is the resolution matrix in the space X. 

The Cooper-Nathans function is expressed with 

X = [ S Q ,  6(hu)], (3.2) 

where the axes of 8Q are fixed with respect to Qo. 
In the space defined by 

X = (~ik,, 8kf), (A.3) 

where 

= akj.  akj. akin, 

the resolution matrix is 

M(Sk,, 8kf)= 

t 
roll m12 0 0 0 0 / 

m12 m22 0 0 0 0 

i 0 m ° ° ij  0 0 m44 m45 
0 0 m45 m5s 
0 0 0 0 m66 

where 

m lm =(2tan 0M)2 1 k 2 = bs 

/ 1 +  1 ~1  
rn~2=-2eM tan 0M - 5  =---7 - - = - e M b o  

kao 2nM] k~ 

m22 = + - 5  + - - 7  L-~ = bl 
a, riM~ t~i 

m33= +(2 sin OMr/~) 2 +/302 

m44 = (2  t a n  0A)2(-~3"+1"-- -~1 (2rla)2] k 2= b3 

m45 = 2eA tan 0 { I " I ' -  I'--~ I =  --EAb 4 A |  2 ,.~ 2 l  L2 
\OL 3 ZTIA/ KF 

m55 = +-5  + - -  - b2 32 k 2 - 

(-~z OArl'A)2+f121 ) 1  m66= +(2 sin - - - -  a22' k~--- 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

(A.13) 

where the O's, e's, a ' s  and fl's are defined in Fig. 1, 
kl and kF are defined by (2.1) and (2.2), r/M,A, rl~,A 
are the horizontal and vertical mosaics of mono- 
chromator and analyser, and the b's and a's are those 
defined by Cooper & Nathans (1967), equations (44) 
and (55) (note the correction given by Dorner, 1972). 

The transformation to the space x', where 

x '=  [SQ, 3(hv), 6k,x, 8k,z], 

is given by the matrix 13, so that 

x'=LI .X. 

If the inverse of U is V, then 

i 0 0 0 vl5 
1 /)22 0 /)24 /)25 

0 0 0 0 

V ~-- 0 0 /)44 /)45 

l o l  /)52 0 / )54/ )55  
0 /)63 0 0 

where 
Vls = 1 

0 
0 

/)36 
0 ' 
0 

/)66 

vzl = -e~ cos ~o2/sin 20, 

v2z = sin q~z/sin 20~ 

v24 = - e J ( y  sin 20~) 

v2s = -e , (cos 20s - kl / kz)/sin 20~ 

= -esQo cos q~i/(kv sin 20~) 

/)36 = 1 

v44 = - 1 / y 
/)45 = kl / kF 

v5~ = -e~ cos q~l/sin 20, 

vs: = sin ~ / s i n  20s 

vs4 = -e~ cos 2 0 J ( y  sin 20~) 

vss = -es[1 - ( k l / k F )  cos 20s]/sin 20s 

= -e~Qo cos ~2/(kF sin 20,) 

/)63 = 1 

/)66 : 1, 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

(3.32) 

where ~p., ~2 and 20s are defined in Fig. 2, and 

= kFh2/m. (A.33) 

The dependence on 6kix, 8kiz is irrelevant, so these 
parameters are removed by integrating over all poss- 
ible values. This leaves the Cooper-Nathans matrix, 
which has four components, one of which, that in 
6Qz, is uncoupled from the other three. 

Consider only 6Qx, 6Qy, with 6(hv) set to zero; 

( Mxx Mxy) (A.34) 
tVl= Mxy M . ,  " 
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The elements are 

M~,.~ = (pv2t + o-v 2, - 2,rv21 vs,)/ a '  (A.35) 

Mxy = [ pV2t/)22 + O'~)51/)52 -- T(V211)52 + 022 D51)] / A' 

(A.36) 

Myy = (01)22 + ¢1)22 -- 2zv22v52)/ A', (A.37) 

where 

p = m22m551)25 + m27v25 + m22m44025 

+ 2 m4s m22/)45/)55 (A.38) 

2 2 1)25 O" = m22m55v25 + m88v45 + m55m ~ 

+ 2mssm12VlsV25 (A.39) 

7" ~--- m22m55/d25Z)55 "Jr- m45 J'l,/22/.)45/.)25 

+ mssm12vlsvs5 + m45m12v45v15 (A.40) 

with 

and 

m277 = mt ,m22-  rn~2 (A.41) 

m28 = m44m55- m~5 (A.42) 

A ' =  m22v~5 + m.v24s + m55v255 + rn,, v2t5 

+ 2m12vlSv25 + 2m45VssV45. (A.43) 

[Compare (A.43) with Cooper & Nathans'  equation 
(45a).] 

Diagonalization by rotation in the x - y  plane 
through an angle 0 gives 

with 

) M ' =  xx 0 
Myy (A.44) 

M'xx=½[to +(X 2 +02) '/2] 

Myy =½[to - (X  2 + q 2),/2], 

where 

to = [p + o ' -  2r  cos (~l - ~2)]/A'sin 2 20s 

X = [ p  cos 2~2+o 'cos  2~1 

- 2 r  cos (~1 + ~,2)]/A' sin 2 2G 

= [p sin 2~2 +cr sin 2~pt 

- 2r sin ( ~  + ~2)]/A' sin 2 2G 

(A.45) 

(A.46) 

(A.47) 

(A.48) 

(A.49) 

and 

0 = ½ arc tan ( -G4 ' /X) .  (A.50) 

This is an exact result from the Cooper-Nathans  
matrix. Now, the approxiation of (2.11) gives 

0 = -e~q~ (A.51) 

M'x~ = (p + o  " -  2r ) /A '  sin 2 20~ (A.52) 

M~yy = ~ / ( p  -F t r - -  2r). (A.53) 

where 

~..~ 2 2 2 2 (A.54) m55m771)15 W m22m881)45. 

Note that, although p, tr and r independently con- 
tain divergent terms as 20s~0,  the combination 
(19 + t r - 2 r )  does not diverge but tends to the limit 

p + o ' -  2r  ~ (m22 + mss)(ml,v~5 + m44v24s) 

-- (ml21)15 q" m45v45) 2. (A.55) 

The result (A.52) and (A.53) indicates that one of 
the three diagonal elements arising from the 6Qx, 6Qy, 
8(hz,) terms in M behaves in the small 2G limit as 

1 
M ,  oc (A.56) 

A sin 2 2G" 

Dorner (1972) showed that the terms in Ro which 
depend on scattering at the sample must be derived 
from the determinant of the resolution matrix, since 

V,V~ ,/~ 
Ro = ~ M (A.57) 

(Dorner's equation 22), where I,'I and VF are primary 
and secondary spectrometer resolution volumes and 
are independent of scattering geometry at the sample. 
This is consistent with one diagonal element behaving 
as in (A.56), since IM[ is the product of the diagonal 
elements, and Ro behaves as shown in (2.9). 

A P P E N D I X  B 
R e s o l u t i o n  m a t r i x  and  e f f i c iency  f a c t o r  in the  direct  

f o r m u l a t i o n  

The derivation of the resolution function in this form 
follows that of the Cooper-Nathans  form up to the 
point where the detection probability is expressed in 
terms of the deviations from the nominal incident 
and scattered wavevectors (A.3-A.13). We transform 
to the three components of 8K (defined in 3.1) and Ski 

m 11 + m44 m, 2 + m45 0 

mr2 + m45 m22 + rn55 0 

M(gki, 8K) = 0 0 m33 + m66 
-- m44 -- m45 0 

- m45 - m55 0 

0 0 - -m66 

--/?]44 --  i?'/45 0 \ 

-- m45 -- m55 0 

0 0 - -m66 

m44 m45 0 

m45 m55 0 

0 0 !,1,166 

(B.1) 
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Now integrate over the three components of 8k;. This gives 

(m44rn727 + m,,m2s)/s (m45m~7 + m,zm~s)/S 
M(SK)= (m45m727+m,2m~s)/s (mssm~7+m=m.~s)/s 

0 0 

where 

o ) 
0 

m33m66/(m33 q- m66 ) 

(B.2) 

S = (m22 + m55)(mli + m44) - (m12 Jr- m45) 2. 

This matrix is diagonalized by a rotation through 0 in the x-y plane, 

" [a  + ( x  ~ + ~:)'/:] 
M(SK') = 0 

0 

0 0 
~ . o - ( x  ~ + ~2)'/~] o 

0 m33 m66 / (m33 Jr m66 ) 

(B.3) 

(B.4) 

where 

with 

and 

~ K  r 
cosO - s i n O  i )  
sinO cosO 8K 

0 0 
(B.5) 

0 = ½ arctan (aF/X) (B.6) 

O=[(m44+rnss)m27+(m,, +m22)m~s]/s (B.7) 

X =[(ma4- mss)m27 +(m,, - m22)m28]/s (B.8) 

= [2 m45 m727 + 2m,2m~s]/s. (B.9) 

In order to derive the pre-exponential term in the 
resolution function, it is necessary to include the 
factors which arise from the elimination of ~iki. To 
avoid ambiguity, the efficiency factor will be 
expressed in terms of the ratio of the detector counting 
rate, ~o,  to the flux per unit solid angle per unit 
wavevector from the reactor, ~(k#), 

O D 21rh 1 
~-~ ) - ED( kF)--~-PM( k, )pA( kI )--k~ ~ 

o12]-'-- 
/33 

X(m33 -a t- m66)-1/2s-1/2 

x j'J'J'j" S(Q, v) exp {--~,~K'M(,~K')SK'} 

xa( a ' - h  ) 47r--~([k,[ +[kF[)&x dvd(SK') ,  

(B.lO) 
where ED(kF) is the detector efficiency at kF, 
PM, A(kl, kF) is the peak reflectivity of monochromator 

or analyser at the appropriate wavevector, and other 
symbols are defined above. 

In the same way, we may write the total flux incident 
on the sample, Os, 

Os _ (2rr)a/2pM (kl)k) cot  0M 
q~(k,)  sin ol 

x /302 +(2r /~  sin OM) 2 

[ 1 1 1 ] -'/2 
x ---T--~ 4 + aoa, ao2(2r/M) 2 a~(2-r/M) 2 

(B.11) 

Under certain circumstances, it may be desirable 
to move the fission-chamber monitor, which is usually 
used to measure the flux incident on the sample, away 
from the sample to before the monochromator-to- 
sample collimator, to cut down the background due 
to small-angle scattering from the monitor. In this 
case, denote the horizontal, vertical collimation from 
monochromator  to monitor by as,/35. The counting 
rate of the monitor, ~M, is then given by 

(/)M E~  3 '2 
~,(kl) = k~ (27r) ' PM(ki)kl cot 0~ 

x 1+ M sin O~ 

/3o 

x /3g +(2r l~  sin OM) 2 

[ 1 1 1 ] -'/2 
x ~ 4  a2(2rl~)24 

~ o ~ 5  ,~ i (G, , , )  ~ ' 

(B.12) 
where EM is the monitor efficiency at KI = 1, and the 
efficiency is assumed to be proportional to (kl) -I 
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The experimentally measured quantity is Do /~M,  

Do Eo(kt : )  h pA(kF) 

(D M E M x / - ~ m  k 3 cot 0M 

[~__~s 2 1 ]1/2 
x +/3o2 +(2r/~ sin eM) 2 

[___L_I + 1 1 ] '/2 
X 2 2 )2 + 

O~oO~ ~o:(2n~ o,~(2n~) ~ 

x (rn33 + m66) -1/2 8-,/2 ;;~; S(Q, v) 

x exp {-  ½BK'M(GK')8~:'} 

x,~ ~ , ' - ~ ( I k t l  +lk~l)~Kx at, d(SK'). 4¢rm 
(B.13) 

The integral involves three different ways of 
expressing the deviations from the nominal wavevec- 
tor transfer (and so, by equation 3.4, from the nominal 
energy transfer). They are related by (B.5) and the 
following: 

c o s ,  -ess in~0 

iiQ = tes s~n ~o cos¢, 0 

or 

cos (O - es~o) 

GQ = - s i n  ( / 9 -  es~o) 

0 

sin (O - es~o) 

cos (O - e~0) 

0 

(B.14) 

0 

0 8K'. 

1 

(B.15) 

The effects of sample mosaic have not been incor- 
porated into the resolution function here because, in 
the limit of small scattering angles, the three- 
dimensional ferromagnetic systems considered here 
show isotropic spin wave scattering (equation 4.1). 
Thus mosaic effects are unimportant,  even in 
powdered or polycrystalline samples. For systems 
which display anisotropic scattering at small angles, 
mosaic effects could be incorporated into the trans- 
verse momentum components of the resolution func- 
tion by performing the transformation (B.14) on the 
matrix (B.2) and including the terms given by Werner 
& Pynn (1971). 

Note that the spectrometer focusing may be optim- 
ized (Ro maximized) by making s smaller by suitable 
choice of configuration. In the small 20s limit, this 
may be achieved with e A = - - e  M.  
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